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Introduction
I Modeling loss data is one of the most important topics in actuarial science.

I Actuaries must predict the future losses based on models in order to provide marketing
opportunity and financial risk management.

I The choice of claims distribution is an important and challenging task.
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Introduction
I Insurance data is very different from the data in other industry,

I In most cases, we have high frequencies of small claims and very few large claims with low
frequencies.

I Traditional distributions such as normal, exponential, inverse-gamma, etc. are not able to
describe the characteristics of insurance data which are both skewed and fat-tailed.

I Central Limit Theorem is not very useful for the insurance industry



Introduction
I Insurance data is very different from the data in other industry,

I In most cases, we have high frequencies of small claims and very few large claims with low
frequencies.

I Traditional distributions such as normal, exponential, inverse-gamma, etc. are not able to
describe the characteristics of insurance data which are both skewed and fat-tailed.

I Central Limit Theorem is not very useful for the insurance industry



Introduction
I Insurance data is very different from the data in other industry,

I In most cases, we have high frequencies of small claims and very few large claims with low
frequencies.

I Traditional distributions such as normal, exponential, inverse-gamma, etc. are not able to
describe the characteristics of insurance data which are both skewed and fat-tailed.

I Central Limit Theorem is not very useful for the insurance industry



Introduction
I Insurance data is very different from the data in other industry,

I In most cases, we have high frequencies of small claims and very few large claims with low
frequencies.

I Traditional distributions such as normal, exponential, inverse-gamma, etc. are not able to
describe the characteristics of insurance data which are both skewed and fat-tailed.

I Central Limit Theorem is not very useful for the insurance industry



Introduction

Danish Fire Loss Up to 7

6.004.002.00.00

F
re

q
u

en
cy

400

300

200

100

0



Mean = 1.98

Std. Dev. = 1.213

N = 2,335

Page 1

Figure 1: Danish fire insurance loss data has 2492 losses in the period 1980-1990. The data has
been adjusted as 1985 values. The adjusted losses range from 0.3134041 to 263.250366 (in
millions).



Introduction
I Teodorescu and Vernic (2006) introduced the composite Exponential-Pareto distribution

I Preda and Ciumara (2006) introduced the Weibull-Pareto and Lognormal-Pareto composite
models

I Cooray and Cheng (2015) used Bayesian methods for estimating parameters of the
lognormal-Pareto

I Scollink and Sun (2012) developed several composite Weibull-Pareto models



Introduction
I Aminzadeh and Deng (2018) developed the composite Inverse Gamma-Pareto model

I Aminzadeh and Deng (2018) used Bayesian methods for estimating parameters of the
Exponential -Pareto Composite, Inverse Gamma-Pareto, and Weibull-Pareto models

I Aminzadeh and Deng (2018) also developed the predictive models for the Exponential -Pareto
Composite, Gamma-Pareto, and Weibull-Pareto Composite.

I predictive model is the predictive distribution of the next loss based on the past losses.



Composite Models
I Let X be a non-negative real-valued random variable. The general form of a composite pdf

involving two distributions with pdfs f1(x) and f2(x) is given by the probability density function,

fX(x) =

{
cf1(x) 0 < x ≤ θ
cf2(x) θ ≤ x <∞

where θ is the parameter that represents the boundary of the supports for the two distributions.

I In order to make the composite density function smooth, it is assumed that the pdf fX(x) is
continuous and differentiable at θ. That is,

f1(θ) = f2(θ), f
′
1(θ) = f

′
2(θ).
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Composite Models
I Pareto distribution has a fatter tail than Normal distribution. Therefore, Pareto is a good choice

as a model to capture large losses in insurance data,

I but it is not good for the small losses with high frequencies.

I That is why many other distributions, such as Exponential,Inverse Gamma, Lognormal, and
Weibull, are combined with the Pareto distribution to model losses with small values in a data
set.



Composite Models
Exponential-Pareto

I Let
f1(x) = λe−λx, x > 0, λ > 0

and
f2(x) =

αθα

xα+1
, x ≥ θ > 0, α > 0

I f1(x) is the pdf of Exponential distribution with parameter λ

I f2(x) is the pdf of Pareto distribution with parameters θ and α.

I This is a three parameters distribution
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I the solutions are
λθ = 1.35, α = 0.35, c = .574
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Composite Models
Exponential-Pareto

I The initial three parameters are reduced to only one parameter θ.

I The pdf of composite Exponential-Pareto distribution is given by

I

fX(x|θ) =

{
.775
θ
e
−1.35x
θ 0 < x ≤ θ

.2θ.35

x1.35
θ ≤ x <∞



Composite Models
Exponential-Pareto

Exp-Pareto with θ is 5

Exp-Pareto with θ is 10

Exp-Pareto with θ is15
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Figure 2:Comparison of Exponential-Pareto Composite Model with different θ (the boundary
between the large losses and smaller losses) and Exponential distribution with different mean µ.



Composite Models
Inverse Gamma-Pareto

I Let

f1(x) =
βαx−α−1e−β/x

Γ(α)
, x > 0, α > 0, β > 0

I and
f2(x) =

aθa

xa+1
, x ≥ θ, a > 0, θ > 0

This is initially four parameters model involved in Inverse- Gamma and Pareto distributions
which is given by

I

fX(x) =

{
cβ

αx−α−1e−β/x

Γ(α)
, α > 0, β > 0 0 < x ≤ θ

c aθa

xa+1 , a > 0, θ ≤ x <∞



Composite Models
Inverse Gamma-Pareto

I Applying smoothing conditions, the number of parameters of the composite Inverse
Gamma-Pareto distribution is reduced to only one parameter θ. The pdf is given by

I

fX(x|θ) =

 c(kθ)αx−α−1e
−kθ
x

Γ(α)
, 0 < x ≤ θ

c(α−k)θα−k

xα−k+1 , θ ≤ x <∞

I where α = 0.308289, k = 0.144351, a = α− k = 0.163947, and c = 0.711384.



Composite Models
Inverse Gamma-Pareto

IG-Pareto with θ is 5
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Figure 3: Comparison of Inverse Gamma-Pareto Composite Model with different θ (the boundary
between the large losses and smaller losses)



Composite Models
Inverse Gamma-Pareto

IG-Pareto with θ is 5
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Figure: Models fit Small Losses part
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Figure: Models fit Large Losses part

Figure 4 and 5 Compare of Inverse Gamma-Pareto Composite Model with θ = 5 and Inverse
Gamma with parameters α = 0.3 and β = 1



Composite Models
Weibull-Pareto

I Let
f1(x) =

β

γβ
xβ−1e

−( x
γ

)β
x > 0, γ > 0, β > 0

I and
f2(x) =

aθa

xa+1
, x ≥ θ, a > 0, θ > 0

The weibull-Pareto composite model has initially four parameters. The pdf is given by

I

fX(x) =

{
c β
γβ
xβ−1e

−( x
γ

)β
, γ > 0, β > 0 0 < x ≤ θ

c aθa

xa+1 , a > 0 θ ≤ x <∞



Composite Models
Weibull-Pareto

I Applying smoothing conditions, the number of parameters of the composite Weibull-Pareto
distribution is reduced to only two parameters α and θ. The pdf is given by

I

fX(x|θ) =

{
aα
x

(x
θ

)αke−c(
x
θ

)αk , 0 < x ≤ θ
b(α
x

)( θ
x

)α θ ≤ x <∞

I where

a =
(k + 1)2

2k + 1
, b =

k + 1

2k + 1
, c =

k + 1

k
, k = 2.8573348.



MLE and Bayes estimates of parameters
Maximum Likelihood Estimator (MLE)

I Let x1, ..., xn be a random sample for the composite pdf and without loss of generality assume
that x1 < x2 < ... < xn is an ordered random sample from the composite models

I the MLE of θ for Exponential-Pareto is

θ̂MLE =
1.35

∑m
i=1 xi

1.35m− .35n
.

I The MLE of θ for Inverse Gamma-Pareto is

θ̂MLE =
mα+ (α− k)m

k
∑m
i=1 x

−1
i

.

I where α = 0.308289 and k = 0.144351

I A program finds m by iteration such that xm ≤ θ ≤ xm+1.
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MLE and Bayes estimates of parameters
Maximum Likelihood Estimator (MLE)

I Closed formulas for the MLEs of α and θ for Weibull-Pareto model cannot be found.

I A search algorithm is used in the Mathematica code to find the global maximum for the
likelihood function for each value of m and obtain the corresponding optimal values for θ and α.

I the likelihood function of Weibull-Pareto is

L(x|α, θ) = m ln(a)+m ln(α)+αkS1−mαk ln(θ)−cS3+(n−m)(ln(b)+ln(α)+α ln(θ))−S2(ln(α)+1)

I where

S1 =
m∑
i=1

ln(xi) S2 =
n∑

i=m+1

ln(xi) S3 =
m∑
i=1

(
xi
θ

)αk.

a =
(k + 1)2

2k + 1
, b =

k + 1

2k + 1
, c =

k + 1

k
, k = 2.8573348.



MLE and Bayes estimates of parameters
Maximum Likelihood Estimator (MLE)

I A search algorithm is as follows,

I For a given sample from the composite model, get sorted sample observations
x1 ≤ x2 ≤ ... ≤ xn.

I 1. Start with m=1, optimize the likelihood function L(x|α, θ) with respect to θ and α. If
x1 ≤ θ̂MLE ≤ x2,

then m = 1, otherwise goto step 2.

I 2. let m=2, optimize the likelihood function L(x|α, θ) with respect to θ and α. If
x2 ≤ θ̂MLE ≤ x3, then

m = 2, otherwise goto step 3.

I 3 Repeat the process until the correct value for m is identified. Using the correct value of m the

corresponding estimates for θ and α are selected that represent the MLEs.



MLE and Bayes estimates of parameters
Bayesian Estimator of E-P model

I Let Inverse-Gamma distribution be the conjugate prior for θ with the pdf

ρ(θ) =
baθ−a−1e−b/θ

Γ(a)
, b > 0, a > 0.

I Then, the posterior pdf can be written as

f(θ|x) = L(x|θ) ∗ ρ(θ) ∝ e−
b+1.35

∑m
i=1 xi

θ θ−(a−.35n+1.35m)−1.

I The expression on the right side is the kernel of Inverse-Gamma(A,B), where
A = (a− .35n+ 1.35m) and B = (b+ 1.35

∑m
i=1 xi).

I Therefore under squared error loss function, the Bayes estimator for θ is

θ̂Bayes = E[θ|x] =
B

A− 1
=

b+ 1.35
∑m
i=1 xi

a− .35n+ 1.35m− 1
.

I A program finds m by iteration such that xm ≤ θ ≤ xm+1. a, b are hyper-parameters of the prior
distribution.



MLE and Bayes estimates of parameters
Bayesian Estimator of IG-P model

I Assume Gamma(γ, δ) as a prior distribution for θ with the pdf

ρ(θ) =
θγ−1e−θ/δ

Γ(γ)δγ
, γ > 0, δ > 0.

I Then, the posterior pdf can be written as

f(θ|x) =
L(x|θ) ∗ ρ(θ)∫
L(x|θ) ∗ ρ(θ)dθ

∝ e−θ(k
∑m
i=1

1
xi

+ 1
δ

)
θna+m(α−a)+γ−1.

I The expression on the right side is the kernel of Gamma pdf with parameter (A,B), where
A = na+m(α− a) + γ and B = δ

(δk
∑m
i=1

1
xi

+1)
.

I Therefore under squared error loss function, the informative Bayes estimator for θ is

θ̂Bayes1 = E[θ|x] = AB =
δ(na+mk + γ)

(δk
∑m
i=1

1
xi

+ 1)
.

I A program finds m by iteration such that xm ≤ θ ≤ xm+1. Where k = 0.144351, a = 0.163947,
and γ, δ are hyper-parameters of the prior distribution.



Predictive Models
Predictive Density of Composite Models

I Let y be a realization of the random variable Y from the composite models. The pdf is denoted
by fY (y|θ) for E-P and IG-P models and fY (y|θ, α) for W-P model.

I Based on the observed sample data x, we are interested in deriving the predictive density
f(y|x).

I In the context of Bayesian framework, predictive density is used to estimate measures such as
E[Y |x] or Var[Y |x] or other risk measures such as VaR, TVaR etc.

I f(θ|x) denotes the posterior distribution for E-P and IG-P models and f(θ, α|x) for W-P model.

I For E-P and IG-P, the predictive density of y|x is obtained through

f(y|x) =

∫ ∞
0

f(θ|x)fY (y|θ)dθ

and

I For W-P, the predictive density of y|x is obtained through

f(y|x) =

∫ ∞
0

∫ ∞
0

f(θ, α|x)fY (y|θ, α)dθdα



Predictive Models
Predictive Density of E-P Model

I For E-P model, the model pdf is

fY (y|θ) =

{
.775
θ
e
−1.35y
θ 0 < y ≤ θ

.2θ.35

y1.35
θ ≤ y <∞

I The posterior pdf is Inverse-Gamma(A,B), where A = (a− .35n+ 1.35m) and
B = (b+ 1.35

∑m
i=1 xi).

I as a result we get

f(θ|x)f(y|θ) =

{
.775

Γ(A)θ
e
−1.35y
θ θ−(A+1)BAe−B/θ y < θ <∞

.2θ.35

Γ(A)y1.35
θ−(A+1)BAe−B/θ 0 < θ < y



Predictive Models
Predictive Density of E-P Model

I The predictive density f(y|x) is given by

f(y|x) =

∫ y

0

f(θ|x)fY (y|θ)dθ +

∫ ∞
y

f(θ|x)fY (y|θ)dθ

= K2(y)H2(y|A− .35, B) +K1(y)(1−H1(y|A+ 1, B + 1.35y)

I where

K1(y) =
.775A ∗BA

Γ(A)(B + 1.35y)A+1
, K2(y) =

.2B.35Γ(A− .35)

Γ(A)y1.35
.

I and H2 is the cdf of Inverse-gamma distribution with parameters (A− .35, B) and H1 is the cdf
of inverse-gamma distribution with parameters (A+ 1, B + 1.35y).

I Similar to the composite density for which E[X] is undefined due to α = 0.35, E[Y |x] and
TV aRp are also undefined for the predictive pdf.



Predictive Models
Predictive Density of E-P Model

n is 20, a is 20

n is 100, a is 100
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Figure 11: Predictive density for selected values of n (sample size), a (hyper-parameter of prior
distribution), and θ = 10. Graphs are based on generated samples from composite E-P pdf.

I Figures 11 reveals that as n increases, the tail of the predictive density becomes heavier, and
as a result, at a specific level, say 0.99, VaR increases.
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Predictive Models
Predictive Density of E-P Model
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Figure 12: Predictive density with various θ values, n = 50 and a = 50. Graphs are based on
generated samples from composite E-P pdf.

I Figure 12 shows, as θ increases, the tail of the predictive density becomes heavier, causing
VaR at a specific level, say 0.99, to increase.
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Figure 12: Predictive density with various θ values, n = 50 and a = 50. Graphs are based on
generated samples from composite E-P pdf.

I Figure 12 shows, as θ increases, the tail of the predictive density becomes heavier, causing
VaR at a specific level, say 0.99, to increase.



Predictive Models
Predictive Density of IG-P Model

I For IG-P model, the model pdf is

fY (y|θ) =

 c(kθ)αy−α−1e
−kθ
y

Γ(α)
, 0 < y ≤ θ

c(α−k)θα−k

yα−k+1 , θ ≤ y <∞

I The posterior pdf is Gamma Distribution with parameter (A,B), where A = na+m(α− a) + γ
and B = δ

(δk
∑m
i=1

1
xi

+1)
.

I as a result we get

f(θ|x)f(y|θ) =

 c(kθ)αy−α−1e
−kθ
y

Γ(α)
θA−1e−θ/B

Γ(A)BA
, 0 < y ≤ θ

c(α−k)θα−k

yα−k+1
θA−1e−θ/B

Γ(A)BA
, θ ≤ y <∞



Predictive Models
Predictive Density of IG-P Model

I The predictive density f(y|x) is given by

f(y|x) =

∫ ∞
y

ckαy−α−1θα+A−1e
−θ( k

y
+ 1
B

)

Γ(α))Γ(A)BA
dθ +

∫ y

0

c(α− k)θα−k+A−1e−
θ
B

yα−k+1Γ(A)BA
dθ

= K1(y)(1−H1(y|α+A,
yB

kB + y
)) +K2(y)H2(y|α− k +A,B)

I where

K1(y) =
kαΓ(α+A)yA−1Bα

(1 +GR(α, k))Γ(α))Γ(A)(kB + y)α+A

and

K2(y) =
(α− k)Bα−kΓ(α− k +A)

(1 +GR(α, k))Γ(A)yα−k+1

I H1 is the cdf of gamma distribution with parameters (α+A, yB
kB+y

) and H2 is the cdf of gamma
distribution with parameters (α− k +A,B).

I Similar to the IG-P composite model for which E[X] is undefined, E[Y |x] is also undefined for
the predictive pdf.



Predictive Models
Predictive Density of IG-P Model
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Figure 13: The predictive density curves (θ = 5,γ = 2,δ = 2.5) based on two generated samples for
n = 500 (dotted line),n = 100 (dashed line),n = 50(dot-dashed line), and n = 20 (solid line).

I Figure 13 provides graphs of the predictive pdf based on only two samples x generated from
the composite model IG-P. It is noted that as sample size increases, discrepancies between
graphs of predictive pdf even based on two samples decrease.The implication is that for larger
n, more accurate estimates for risk measures can be obtained.
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I Figure 13 provides graphs of the predictive pdf based on only two samples x generated from
the composite model IG-P. It is noted that as sample size increases, discrepancies between
graphs of predictive pdf even based on two samples decrease.The implication is that for larger
n, more accurate estimates for risk measures can be obtained.



Predictive Models
Predictive Density of IG-P Model
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Figure 14: The predictive density curves (n=1000) for θ = 50, γ = 25, δ = 2 (dotted line),θ = 25,
γ = 12.5, δ = 2 (dashed line), θ = 10, γ = 5, δ = 2(dot-dashed line), and θ = 5, γ = 2.5, δ = 2 (solid
line).

I Figure 14 provides graphs of the predictive pdf for different values of θ. The hyper-parameter
(γ, δ) values are selected in such a way that γδ = θ. As we can see, for larger θ the tail of the
predictive pdf is heavier.



Predictive Models
Predictive Density of IG-P Model

θ=5,γ=2.5,δ=2

θ=10,γ=5,δ=2

θ=25,γ=12.5,δ=2

θ=50,γ=25,δ=2

10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 14: The predictive density curves (n=1000) for θ = 50, γ = 25, δ = 2 (dotted line),θ = 25,
γ = 12.5, δ = 2 (dashed line), θ = 10, γ = 5, δ = 2(dot-dashed line), and θ = 5, γ = 2.5, δ = 2 (solid
line).

I Figure 14 provides graphs of the predictive pdf for different values of θ. The hyper-parameter
(γ, δ) values are selected in such a way that γδ = θ. As we can see, for larger θ the tail of the
predictive pdf is heavier.



Risk Measures
Limited Moment

I A popular insurance phenomenon is the maximum benefit. The policy limit reduces the
insurance company’s future risk and also at the same time it reduces the cost of the insurance
policy, because the pure premium is defined as the expectation of the loss.

I Let the policy limit be denoted by b and X be the loss random variable with the pdf f(x). Then
limited loss random X ∧ b is defined as

X ∧ b =

{
X 0 < x ≤ b
b b ≤ x <∞

I The kth moment of the limited loss is called the kth limited moment (LM) and is defined as

E[(X ∧ b)k] =

∫ b

−∞
xkf(x)dx+

∫ ∞
b

bkf(x)dx.



Risk Measures
Limited Moment

I The most important cases are k = 1 and k = 2 which provide respectively, the limited
expectation (LE) or pure premium and the limited variance (LV).

LE=E[(X ∧ b)] =

∫ b

−∞
xf(x)dx+

∫ ∞
b

bf(x)dx

LV=E[(X ∧ b)2]− (E[(X ∧ b)])2.

I As mentioned earlier, E[Y |x] is not defined for the predictive density for both E-P and IG-P
models. However in practice one would be interested in estimating kth limited moment through
a Bayesian method.

E[(Y ∧ b)k|x] =

∫ b

−∞
ykf(y|x)dy +

∫ ∞
b

bkf(y|x)dy

LPE and LPV can be found accordingly.



Risk Measures
VaR and TVaR(CTE)

I Two most important risk measures are Value-at-Risk(VaR) and Tail-Value-at-Risk (TVaR) or
Conditional Tail Expectation (CTE). CTE was independently developed and widely used in the
insurance industry.

I VaR is the amount of capital the insurance company should have in order to guarantee there is
a small probability that the insurance company will bankrupt by one adverse claim over the next
period. VaR is defined as

P (X ≤ V aRp(X)) = p

for a given p and a distribution for X.

I CTE is the expected loss given that the loss is larger than VaR at p level and it is defined as

TV aRp(X) = E[X|X > V aRp(X)] =

∫∞
V aRp(x)

xf(x)dx

1− p .



Risk Measures
VaR and TVaR(CTE)

I Limited predictive CTE (LPCTE) can be calculated by using the predictive pdf.

LPCTE = E[(Y ∧ b)|Y > V aRp(Y )] =

∫ b
V aRp(y)

yf(y|x)dy +
∫∞
b
bf(y|x)dy

1− p .



Simulation
I Simulation studies are conducted to assess accuracy of estimates of unknown parameters by

different methods, as well as estimates of important risk measures such as PE, PV, VaR, CTE,
LPE, LPV, and LPCTE.



Simulation
Exponential-Pareto Model

I To assess accuracy of θBayes as well as VaR, simulation studies are conducted.

I For selected values of n, θ and the hyper-parameters (a, b), N = 300 samples from the E-P
composite density are generated



Simulation
Exponential-Pareto Model

Table 1: Accuracy of Bayes Estimator, MLE, and VaR, θ=5
n a θ̂Bayes ξ(θ̂Bayes) V aR Std(VaR) θ̂MLE ξ(θ̂MLE)

20 70 5.22 0.059 802.25 22.82 7.68 25.17
50 80 5.15 0.021 763.92 39.30 7.47 18.450
100 80 5.07 0.04 27.99 1.36 6.20 3.28



Simulation
Exponential-Pareto Model

Table 2: Accuracy of Bayes Estimator, MLE, and VaR, θ=10
n a θ̂Bayes ξ(θ̂Bayes) V aR Std(VaR) θ̂MLE ξ(θ̂MLE)

20 50 10.653 .484 1594.48 69.893 13.923 73.893
50 100 10.576 .357 1608.41 39.65 12.503 21.582
100 150 9.998 .091 1810.46 22.52 12.061 13.473



Simulation
Exponential-Pareto Model

I In Tables 1-8, the line on top of each estimator denotes sample mean of simulated estimates. ξ
denotes square root of MSE for an estimator.

I Examination of Tables 1 and 2 reveal that for larger n, θ̂MLE and θ̂Bayes are more accurate.
θ̂Bayes, average of Bayes estimates is more closer to the actual value of θ than θ̂MLE , average
of MLEs.

I It is noted that as θ increases, values of x in a sample get bigger and as a result m increase.
Therefore, one would need to choose a larger values for “a”to satisfy the condition
A = a− .35n+ 1.35m > 0.

I For all values of n in Tables 1, 2, we note that MSE(Bayes)=ξ(θ̂Bayes) is significantly smaller
than MSE(MLE) =ξ(θ̂MLE).

I Also Tables 1, 2 reveal that as θ increases, the sample mean V aR and StDev of VaR increase.
This is anticipated, because, large value for θ implies more fatter composite density. However,
for a fixed value of θ, as n increases, VaR estimate becomes more stable.



Simulation
Inverse Gamma-Pareto Model

Table 3: Accuracy of θ̂MLE , θ̂S , and θ̂Bayes1

(θ = 5 γ = 5 δ = 1)

n θ̂MLE ξMLE θ̂S ξS θ̂Bayes1 ξBayes1
20 6.098 3.525 7.916 10.388 5.235 1.120
50 5.408 1.933 5.928 3.594 5.186 1.094
100 5.242 1.119 5.387 2.354 5.157 0.857
500 5.044 0.522 5.072 0.815 5.040 0.497



Simulation
Inverse Gamma-Pareto Model

Table 4: Accuracy of θ̂MLE , θ̂S , and θ̂Bayes1

( θ = 5 γ = 2 δ = 2.5)

n θ̂MLE ξMLE θ̂S ξS θ̂Bayes1 ξBayes1
20 5.395 1.680 8.714 12.060 5.395 1.680
50 5.445 1.787 5.782 13.961 5.295 1.365
100 5.361 1.298 5.580 2.522 5.106 1.159
500 5.042 0.522 5.063 0.902 5.040 0.511



Simulation
Inverse Gamma-Pareto Model

Table 5: Accuracy of θ̂MLE , θ̂S , and θ̂Bayes1

( θ = 10 γ = 2 δ = 5)

n θ̂MLE ξMLE θ̂S ξS θ̂Bayes1 ξBayes1
20 11.500 14.657 17.889 23.900 11.500 4.139
50 11.290 4.021 12.518 9.852 10.888 3.019
100 10.36 2.232 10.630 4.664 10.289 1.988
500 10.033 0.989 10.040 1.780 10.029 0.969



Simulation
Inverse Gamma-Pareto Model

Table 6: Accuracy of θ̂MLE , θ̂S , and θ̂Bayes1

( θ = 10 γ = 10 δ = 1)

n θ̂MLE ξMLE θ̂S ξS θ̂Bayes1 ξBayes1
20 13.188 11.698 18.162 27.407 10.110 1.380
50 10.694 3.637 11.602 6.580 10.080 1.576
100 10.402 2.350 11.193 5.340 10.159 1.470
500 10.130 1.0276 10.144 1.816 10.110 0.935



Simulation
Inverse Gamma-Pareto Model

Table 7: Accuracy of θ̂MLE , θ̂S , and θ̂Bayes1

(θ = 6 γ = 1 δ = 8)

n θ̂MLE ξMLE θ̂S ξS θ̂Bayes1 ξBayes1
20 6.369 3.959 7.073 11.843 6.373 3.120
50 5.581 2.009 6.098 3.719 5.695 1.938
100 5.263 1.228 5.416 3.018 5.339 1.218
500 4.973 0.500 4.884 0.800 4.991 0.498



Simulation
Inverse Gamma-Pareto Model

Table 8: Accuracy of θ̂MLE , θ̂S , and θ̂Bayes1

(θ = 7 γ = 2 δ = 4)

n θ̂MLE ξMLE θ̂S ξS θ̂Bayes1 ξBayes1
20 6.480 4.643 7.429 9.410 6.439 2.930
50 5.476 1.884 5.671 3.346 5.709 1.745
100 5.259 1.276 5.435 2.785 5.406 1.267
500 5.019 0.470 5.022 0.966 5.054 0.471



Simulation
Inverse Gamma-Pareto Model

I Tables 3-8 reveals that as sample size increase all estimators become more accurate.

I In Tables 3-4, hyper-parameters γ and δ are selected so that E[θ] = γδ (mean of gamma prior),
is the same as the true value of θ. However, in Table 3, Var(θ) = γδ2 is smaller than in Table 4.
And we can see that the Bayes estimator in Table 3 has a smaller MSE than in Table 4, in
particular for small sample sizes.

I The same is true when comparing Table 5 with Table 6.

I In Table 7-8, on purpose, values of hyper-parameters are selected in such a way that γδ is not
equal to the true value of θ.

I Comparing Table 3 with Table 7, reveals that Bayes estimator is more accurate, in particular for
small sample sizes (n=20,100,150) when “appropriate” values for hyper-parameters are not
selected. As sample size increase, the impact of “inappropriate” hyper-parameters values
diminishes.



Simulation
Inverse Gamma-Pareto Model

Table 9: Accuracy of LPE and LPV

(θ = 5 γ = 2 δ = 2.5)
n LPE StDev(LPE) LPV StDev(LPV )

20 114306 5828.35 9.10002× 1010 3.96769× 109

50 115132 4943.69 9.15723× 1010 3.35435× 109

100 115528 4221.32 9.18478× 1010 2.86383× 109

200 114792 2814.43 9.13568× 1010 1.91621× 109



Simulation
Inverse Gamma-Pareto Model

Table 10: Accuracy of LPE and LPV

(θ = 10 γ = 2 δ = 5)
n LPE StDev(LPE) LPV StDev(LPV )

20 129489 7862.23 1.1098× 1011 5.12453× 109

50 129518 556.64 1.01148× 1011 3.60382× 109

100 129459 4633.25 1.0118× 1011 3.02295× 109

200 129041 3468.18 1.00855× 1011 2.25531× 109



Simulation
Inverse Gamma-Pareto Model

Table 11: Accuracy of VaR and LPCTE

(θ = 5 γ = 2 δ = 2.5)
n V aR.85(y) StDev(V aR.85(y)) LPCTE StDev(LPCTE)

20 67662.7 22063.3 750455 36267.2
50 69315.4 19353.9 754681 30568.6
150 68438.4 13400.8 755312. 20734.1



Simulation
Inverse Gamma-Pareto Model

I Tables 9 and 10 reveal that as n increase, LPE and LPV become more accurate and stable as
we expected.

I It is noted that LPE and LPVAR do not depend on sample size, they only depend on sampled
data x.

I Also LPE and LPV estimates are larger for θ = 10 than for θ=5, and this is due to the heavier tail
of the model with θ=10 than for the model with θ=5. b = 106 is used as the policy limit.

I Simulation results for VaR and LPCTE based on N=200 random samples with size n are given
in the Table 11. It is assumed that the policy limit is b = 106.

I Table 11 indicates that as sample size increases, precision of VaR and LPCTE increase.



Model Selection
I Danish fire insurance loss data set has been used by many researches for a variety of

composite models.

I There are 2492 losses in Danish Krone (DKK) data from the years 1980 to 1990. The data has
been adjusted as 1985 values. The adjusted losses range from 0.3134041 to 263.250366 (in
millions).

I We apply all three composite models E-P, IG-P, and W-P to the data and compute both MLE
and Bayesian estimates. Use Anderson-Darling test to determine the best model among three
of them.

I the risk measures for the best model will be found accordingly.



Model Selection
Estimates of parameters of composite models

Table 20: Estimates of parameters of Danish fire data Based on E-P Model
Hyper-Parameter Estimate of θ̂

MLE 2.76786
Bayes1 a = 5, b = θ̂MLE(a− 1) 2.77217
Bayes2 a = 80, b = θ̂MLE(a− 1) 2.92854

Table 21: Estimates of parameters of Danish fire data Based on IG-P Model
Hyper-Parameter Estimate of θ̂

MLE 3.32553
Bayes1 γ = 5, δ = γ

θ̂MLE
3.3387

Bayes2 γ = 80, δ = γ

θ̂MLE
3.70178



Model Selection
Graphs of E-P composite model to fit Danish Fire Data

E-P model MLE with θ is 2.76786

E-P model Bayes1 with θ is 2.77217,a is 5

E-P model Bayes2 with θ is 2.92854,a is 80
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Figure 17: Comparison of the E-P model with empirical distribution of Danish Fire data.

I Figure 17 shows the empirical distribution of Danish Fire data (histogram) and the graphs of the
E-P density using the estimated values in Table 20. The graphs of E-P composite density
doesn’t fit the histogram due to α < 1.



Model Selection
Graphs of IG-P composite model to fit Danish Fire Data

IG-P model MLE with θ is 3.32553

IG-P model Bayes1 with θ is 3.3387,γ is 5

IG-P model Bayes2 with θ is 3.70178,γ is 80
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Figure 18: Comparison of the IG-P model with empirical distribution of Danish Fire data.

I Figure 18 shows the empirical distribution of Danish Fire data (histogram) and the graphs of the
IG-P density using the estimated values in Table 21. The graphs of IG-P composite density
don’t fit the histogram due to α < 1. But IG-P is better than E-P model.



Summary
I A Bayes estimator via Inverse-gamma prior for the boundary parameter θ, that separates large

losses and small losses in insurance data is derived based on the Exponential-Pareto, Inverse
Gamma-Pareto, and Weibull-Pareto composite model.

I Simulation studies indicate that the Bayes estimators consistently outperform the maximum
likelihood estimators in all three composite models.

I A Bayesian predictive density is derived via the posterior pdf for θ for both E-P and IG-P models
and θ and α for W-P model.

I The Bayesian predictive pdf is used to estimate important risk measures that are used in
Actuarial Science field, such as VaR, LPE, LPV, and LPCTE. Simulation studies indicate that
large sample size would make these estimates more accurate.

I All three composite models are used to fit the insurance data-the Danish fire data.
Weibull-Pareto is the best model out of three.
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